1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
| #include<algorithm> #include<iostream> #include<iomanip> #include<cstring> #include<cstdlib> #include<climits> #include<vector> #include<cstdio> #include<cmath> #include<queue> using namespace std;
typedef long long LL;
inline const int Get_Int() { int num=0,bj=1; char x=getchar(); while(x<'0'||x>'9') { if(x=='-')bj=-1; x=getchar(); } while(x>='0'&&x<='9') { num=num*10+x-'0'; x=getchar(); } return num*bj; }
const int maxn=262144+5; const LL mod=1004535809,g=3;
LL Quick_Pow(LL a,LL b) { LL sum=1; for(; b; b>>=1,a=a*a%mod)if(b&1)sum=sum*a%mod; return sum; }
LL inv(LL x) { return Quick_Pow(x,mod-2); }
struct NumberTheoreticTransform { int n; LL omega[maxn],iomega[maxn]; void init(int n) { this->n=n; int x=Quick_Pow(g,(mod-1)/n); omega[0]=iomega[0]=1; for(int i=1; i<n; i++) { omega[i]=omega[i-1]*x%mod; iomega[i]=inv(omega[i]); } } void transform(LL* a,LL* omega) { int k=log2(n); for(int i=0; i<n; i++) { int t=0; for(int j=0; j<k; j++)if(i&(1<<j))t|=(1<<(k-j-1)); if(i<t)swap(a[i],a[t]); } for(int len=2; len<=n; len*=2) { int mid=len>>1; for(LL* p=a; p!=a+n; p+=len) for(int i=0; i<mid; i++) { LL t=omega[n/len*i]*p[mid+i]%mod; p[mid+i]=(p[i]-t+mod)%mod; p[i]=(p[i]+t)%mod; } } }
void dft(LL* a) { transform(a,omega); }
void idft(LL* a) { transform(a,iomega); LL x=inv(n); for(int i=0; i<n; i++)a[i]=a[i]*x%mod; } } ntt;
void polynomial_inverse(const LL* a,const int n,LL* b) { if(n==1) { b[0]=inv(a[0]); return; } polynomial_inverse(a,n>>1,b); int p=n<<1; static LL x[maxn]; copy(a,a+n,x),fill(x+n,x+p,0); ntt.init(p),ntt.dft(x),ntt.dft(b); for(int i=0; i<p; i++)b[i]=b[i]*((2-x[i]*b[i]%mod+mod)%mod)%mod; ntt.idft(b),fill(b+n,b+p,0); }
LL n,fac[maxn],invi[maxn],invf[maxn],g1[maxn],G[maxn],C[maxn],_G[maxn];
int main() { n=Get_Int(); fac[0]=invf[0]=invi[1]=1; for(int i=1; i<=n; i++) { fac[i]=fac[i-1]*i%mod; if(i!=1)invi[i]=(mod-mod/i)*invi[mod%i]%mod; invf[i]=invf[i-1]*invi[i]%mod; } g1[0]=g1[1]=1; for(int i=2; i<=n; i++)g1[i]=Quick_Pow(2,(LL)i*(i-1)/2%(mod-1)); for(int i=0; i<=n; i++)G[i]=g1[i]*invf[i]%mod; for(int i=1; i<=n; i++)C[i]=g1[i]*invf[i-1]%mod; int p=1; while(p<n+1)p<<=1; polynomial_inverse(G,p,_G); fill(_G+n+1,_G+p,0); p<<=1; ntt.init(p); ntt.dft(_G); ntt.dft(C); for(int i=0; i<=p; i++)_G[i]=_G[i]*C[i]%mod; ntt.idft(_G); printf("%lld\n",_G[n]*fac[n-1]%mod); return 0; }
|