1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
| #include<algorithm> #include<iostream> #include<iomanip> #include<cstring> #include<cstdlib> #include<vector> #include<cstdio> #include<cmath> #include<queue> using namespace std; inline const int Get_Int() { int num=0,bj=1; char x=getchar(); while(x<'0'||x>'9') { if(x=='-')bj=-1; x=getchar(); } while(x>='0'&&x<='9') { num=num*10+x-'0'; x=getchar(); } return num*bj; } const int maxn=100005; int n,m,q,dist[maxn],vst[maxn],p[maxn][35],f[maxn][35],Depth[maxn]; struct Edge { int from,to,dist,dist2; }; vector<Edge>edges[maxn]; void AddEdge(int x,int y,int v,int v2) { edges[x].push_back((Edge) { x,y,v,v2 }); } struct HeapNode { int d,u; bool operator < (const HeapNode& b) const { return d>b.d; } }; void Dijkstra(int s) { priority_queue<HeapNode>Q; for(int i=1; i<=n; i++)dist[i]=0x7fffffff/2,vst[i]=0; dist[s]=0; Q.push((HeapNode) { 0,s }); while(!Q.empty()) { int Now=Q.top().u; Q.pop(); if(vst[Now])continue; vst[Now]=1; for(int i=0; i<edges[Now].size(); i++) { Edge& e=edges[Now][i]; int Next=e.to; if(dist[Next]>dist[Now]+e.dist) { dist[Next]=dist[Now]+e.dist; Q.push((HeapNode) { dist[Next],Next }); } } } } void Sparse_Table() { queue<int>Q; Q.push(1); for(int i=1; i<=n; i++) for(int j=0; j<=log2(n); j++) { p[i][j]=-1; if(j!=0)f[i][j]=0x7fffffff/2; } while(!Q.empty()) { int Now=Q.front(); Q.pop(); for(int i=1; i<=log2(n); i++) if(p[Now][i-1]!=-1) { p[Now][i]=p[p[Now][i-1]][i-1]; f[Now][i]=min(f[p[Now][i-1]][i-1],f[Now][i-1]); } for(int i=0; i<edges[Now].size(); i++) { Edge& e=edges[Now][i]; int Next=e.to; if(dist[Now]+e.dist==dist[Next]) { p[Next][0]=Now; Depth[Next]=Depth[Now]+1; Q.push(Next); } } } } int Solve1(int x,int k) { if(Depth[x]<k)return -1; int Min=0x7fffffff/2; for(int i=log2(n); i>=0; i--) if(p[x][i]!=-1&&Depth[p[x][i]]>=k) { Min=min(Min,f[x][i]); x=p[x][i]; } return min(Min,f[x][0]); } int Solve2(int x,int t) { if(dist[x]<t)return -1; int Min=0x7fffffff/2; for(int i=log2(n); i>=0; i--) if(p[x][i]!=-1&&dist[p[x][i]]>=t) { Min=min(Min,f[x][i]); x=p[x][i]; } return min(Min,f[x][0]); } int main() { n=Get_Int(); m=Get_Int(); q=Get_Int(); for(int i=1; i<=m; i++) { int x=Get_Int(),y=Get_Int(),v1=Get_Int(),v2=Get_Int(); AddEdge(x,y,v2,v1); AddEdge(y,x,v2,v1); } Dijkstra(n); for(int Now=1; Now<=n; Now++) for(int i=0; i<edges[Now].size(); i++) edges[Now][i].dist=edges[Now][i].dist2; for(int i=1; i<=n; i++)f[i][0]=dist[i]; Dijkstra(1); Sparse_Table(); dist[0]=Depth[0]=-1; for(int i=1; i<=q; i++) { int opt=Get_Int(),x=Get_Int(),y=Get_Int(); if(opt==1)printf("%d\n",Solve1(x,y)); else printf("%d\n",Solve2(x,y)); } return 0; }
|