1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
| #include<algorithm> #include<iostream> #include<iomanip> #include<cstring> #include<cstdlib> #include<climits> #include<vector> #include<cstdio> #include<cmath> #include<queue> using namespace std;
typedef long long LL;
inline const int Get_Int() { int num=0,bj=1; char x=getchar(); while(x<'0'||x>'9') { if(x=='-')bj=-1; x=getchar(); } while(x>='0'&&x<='9') { num=num*10+x-'0'; x=getchar(); } return num*bj; }
const int maxn=65536+5,maxk=17; const LL mod=998244353,g=3;
LL Quick_Pow(LL a,LL b) { LL sum=1; for(; b; b>>=1,a=a*a%mod)if(b&1)sum=sum*a%mod; return sum; }
LL inv(LL x) { return Quick_Pow(x,mod-2); }
struct NumberTheoreticTransform { int n,rev[maxn]; LL omega[maxn],iomega[maxn]; void init(int n) { this->n=n; int x=Quick_Pow(g,(mod-1)/n); omega[0]=iomega[0]=1; for(int i=1; i<n; i++) { omega[i]=omega[i-1]*x%mod; iomega[i]=inv(omega[i]); } int k=log2(n); for(int i=0; i<n; i++) { int t=0; for(int j=0; j<k; j++)if(i&(1<<j))t|=(1<<(k-j-1)); rev[i]=t; } } void transform(LL* a,LL* omega) { for(int i=0; i<n; i++)if(i<rev[i])swap(a[i],a[rev[i]]); for(int len=2; len<=n; len*=2) { int mid=len>>1; for(LL* p=a; p!=a+n; p+=len) for(int i=0; i<mid; i++) { LL t=omega[n/len*i]*p[mid+i]%mod; p[mid+i]=(p[i]-t+mod)%mod; p[i]=(p[i]+t)%mod; } } }
void dft(LL* a) { transform(a,omega); }
void idft(LL* a) { transform(a,iomega); LL x=inv(n); for(int i=0; i<n; i++)a[i]=a[i]*x%mod; } } ntt;
void polynomial_inverse(const LL* a,const int n,LL* b) { if(n==1) { b[0]=inv(a[0]); return; } polynomial_inverse(a,n>>1,b); int p=n<<1; static LL x[maxn]; copy(a,a+n,x),fill(x+n,x+p,0); ntt.init(p),ntt.dft(x),ntt.dft(b); for(int i=0; i<p; i++)b[i]=b[i]*((2-x[i]*b[i]%mod+mod)%mod)%mod; ntt.idft(b),fill(b+n,b+p,0); }
void Multiply(const LL* a1,const int n1,const LL* a2,const int n2,LL* ans) { int n=1; while(n<n1+n2)n<<=1; ntt.init(n); static LL c1[maxn],c2[maxn]; copy(a1,a1+n1,c1),fill(c1+n1,c1+n,0); copy(a2,a2+n2,c2),fill(c2+n2,c2+n,0); ntt.dft(c1); ntt.dft(c2); for(int i=0; i<n; i++)c1[i]=c1[i]*c2[i]%mod; ntt.idft(c1); for(int i=0; i<n1+n2-1; i++)ans[i]=c1[i]; }
LL tmp[maxn];
void polynomial_lnp(LL *a,LL *ans,int n) { int p=1; while(p<n)p<<=1; polynomial_inverse(a,p,tmp); fill(tmp+n,tmp+p,0); for(int i=0; i<n; i++)ans[i]=a[i+1]*(i+1)%mod; ans[n]=0; Multiply(ans,n,tmp,n,ans); fill(ans+n,ans+2*n,0); for(int i=n; i>=1; i--)ans[i]=ans[i-1]*inv(i)%mod; ans[0]=0; }
int n; LL S[maxk][maxk],fac[maxn],invf[maxn],G[maxn],F[maxn],Mul[maxk][maxn];
int main() { n=30000; S[0][0]=1; for(int i=1; i<maxk; i++) { for(int j=1; j<maxk; j++)S[i][j]=(S[i-1][j-1]+S[i-1][j]*j)%mod; } fac[0]=invf[0]=1; for(int i=1; i<=n; i++) { fac[i]=fac[i-1]*i%mod; invf[i]=inv(fac[i]); } for(int i=0; i<=n; i++)G[i]=Quick_Pow(2,i*(i-1)>>1)*invf[i]%mod; polynomial_lnp(G,F,n+1); Mul[0][0]=1; for(int i=1; i<maxk; i++) { Multiply(F,n+1,Mul[i-1],n+1,Mul[i]); fill(Mul[i]+n+1,Mul[i]+2*n,0); } for(int i=maxk-1; i>=1; i--) { for(int j=1; j<i; j++) for(int k=0; k<=n; k++)Mul[i][k]=(Mul[i][k]+Mul[j][k]*S[i][j])%mod; Multiply(Mul[i],n+1,G,n+1,Mul[i]); fill(Mul[i]+n+1,Mul[i]+2*n,0); } int t=Get_Int(); while(t--) { int n=Get_Int(),m=Get_Int(); printf("%lld\n",Mul[m][n]*fac[n]%mod); } return 0; }
|